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20. Continued

expression for the transverse electric component of the field was evaluated numerically for
several of the lower loss modes in confocal, spherical, and unstable resonators with linear
dimensions the order of 10 wavelengths. These data indicate that some of the modes in confocal
and spherical resonators are unstable, if the resonator has dimensions of a few wavelengths. The
effect on the spatial distribution of the resonator field due to saturation of the amplifying
medium is slight if spatial hole burning is neglected. The electromagnetic field given by this
theory was also quantized, and the resulting formulation resembles the quantum theory for
radiation in a closed resonator.
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ELECTROMAGNETIC FIELD IN A LASER RESONATOR

INTRODUCTIONr

Since the Invention of the laser the open resonator has been of considerable Interest
in applied physicss Our present theoretical understanding of the optical field distribution
in an open resonator is founded on the work of Fox and Li [1] and of Boyd and
Kogelnik 12]. Although their theories have been extended and refined [3], the approach
of these authors to describing the field is still used and is the basis for nearly all of the
subsequent theoretical work on the subject

The Fox and Li analysis, the Boyd and Kogelnik analysis, and almost all subsequent
treatments of the theory for open resonators employ the Fresnel-Kirchhoff Integral of
scalar diffraction theory 14]. However other approaches to describing electromagnetic
walve proplogation are superior in many respects The Fresnel-Kirchhoff theory has num-
eroue disadvnntagcs It Is basially a scalar theory and can be extended to treat the electro
magnetic properties of light only with some difficulty. Because it Is an expansion of the
field in terms of spherical (Iluygens') wavelet,, It usually gives rise to awkward expressions
in rectangular coordinates These expressions can frequently be handled only after mnk-
ing very restrictive approximations such as a paraxial approximation, the Fresnel approxi-
mntion, or the Fraunhofer approximation And lastly the Fresnel Kirchhoff theory is not
easily extended to consider wave propagation in amplifying or conducting media.

For certain classes of problems a much more straightforward, and in some respects
more satisfactory, approach to wave propagation employs an expansion of the electro-
magnetic field into an angular spectrum of plane waves [5-7]. These expansions are
particularly simple in rectangular coordinates, so that problems can often be solved more
accurately. Also, in many eases all of the Cartesian components of an electromagnetic
field can be represented very simply in terms of only two scalar plane wave spectra, one
for each state of plane polarization Thus a full electromagnetic treatment often becomes
no more difficult than a scalar treatment For these and other reasons the angular
spectrum representation is frequently superior to the Huygens'-wavelet representation.

A selar theory employing the angular-spectrum representation to describe the field
in an empty resonator with plane parallel reflectors was given by Bergsteln and Marom
1[8. In the present report we will develop a closely related electromagnetic theory to
describe the field in any resonator with two identical reflectors that have circular bound-
aries These reflectors may have arbitrary radii, focal length, and axial separation. This
theory is not limited to the paraxial approximation, is an electromagnetic theory which
takes full account of the vector properties of light, and gives the field distribution in three
dimensions over the Interior of the resonator and not only over the surface of a reflector.
A limitation to the theory is the use of an axial gain approximation to account for the
active medium This is similar, however, to the approximation that Is used in the theories
based on the Huygens Fresnel principle.

kintiteript slubmitted Septrme1 26, 1973



WILLIAM EL CARTER

In the following (first) section we will derive the mode equation, which determines
the angular spectrum for each mode of the resonator field, and we will give integral
expressions for the Cartesian components of the electromagnetic field in terms of the
angular spectrum. In the second section we will study the transverse electric component
of the field in small resonators which are either confocal, spherical, or unstable, through
numerical integration of the expression derived in the first section. These data indicate
that these resonators all show signs of instability due to high diffraction losses and that
the effects on the fields due to saturation of the amplifying medium are negligible if
spatial hole burning is ignored. Finally in the third section we will quantize the field and
show that the quantized field is in good agreement with that frequently assumed on the
basis of closed resonator theory.

THE MODE EQUATION

This report is concerned with the distribution of the electromagnetic fields, in three
dimensions, inside a laser resonator such as that shown schematically in Fig. 1. This
resonator is formed by two identical reflectors with unit reflectivity, each of diameter 2a
and focal length f and separated by an axial distance 2L. Because the resonator is sym-
metric about the plane P in the figure, the fields in each half of the resonator are the
same upon reflection about P (except for a possible change in sign). For this reason it is
sufficient to determine the fields only over the region to the left of P.

'P

FOCAL LENGTHf f

I - L L - j L
Fig. 1-Geometry of the resonator studied in this analysis

Incidentally it will become evident that the fields in one class of asymmetric resona-
tors can also be determined directly from this analysis. These resonators are formed by
replacing one of the reflectors by an infinite, plane reflector with unit reflectivity coin-
ciding with the plane P.

The standing waves inside this symmetric resonator may be represented in terms of
traveling waves by employing a technique used previously by Fox and Li [1]. This is
done by replacing the two reflectors by an infinite sequence of equivalent lenses mounted
in opaque stops and considering only traveling waves propagating through the lenses in
the +z direction as shown in Fig. 2. If we require that these traveling waves reproduce
exactly the same fields between each pair of lenses, then the traveling waves in region A
of Fig. 2 are the same as the component of the resonator standing waves which travels to
the right within the half of the resonator to the left of P, and the traveling waves in
region B are the mirror image of the complementary component of the resonator standing
waves which travels to the left within the half of the resonator to the left of P. Thus the
sequence of lenses is actually an unfolded replica of the resonator.

2
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Qw __. _ 
Fig 2-The reconator from Fig 1, which hNv been unfolded Into an
equivalent sequenee of lentet The mofde eqtnatbon followt from the
requilrement that the tran'vetse electric field be equal, except for a
pn lhle ehnre in sign, over the two planep aq shown In thil figure.
Thlc fi gliven by Eqt ( 1)

The traveling waves will reproduce the same field, between each pair of lenses If the
following condition is met The component of the electric field transverqe to the resonn-
tot axis must have the same spatial distribution over the plane 2 I 2r,, just after passing
through the lens, a over the * 0 plane (Fig. 2) except for a possihle change In sign;
that isL

{E(XY, 0)} ± {E(x, y, 2t)} exp {(T)ik(x2 y2 If2)1 crc (x 2 Y2 )a (In)

{E(x y, 0) tfE(x, y, 2L)} exp m(T)ik(x2 +y 2 4 2)11 circ ( ). (11)

where tew symbols A ., A , A, represent the Cartesian x, y,z components of the
vector A The fieldc here are assumed to be monochromatic with the time dependence
exp (- kt) suppressed and k -- coc. The upper sign inside the parenthesis is taken if the
lenses are convex, the lower sign Is taken if they are concave, and

cire (r) 1, if 0 < r < 1, (24)

0, otherwise. (21))

The resonator is actimed to contain an isotropic, hormogeneous, nonconducting
medium which contains sources which amplify the field by stimulated emission. Losses
due to scattering and absorption by the medium are neglected It Is also a9s0umed that
the medium is Doppler broadened 191, as for a gas lacer, so that the atomie populations
coupled to the right- and left-traveling waves are different and can be separated Into
regions A and B of the unfolded resonator.

If in addition to these conditions an axial gain approximation is employed, as dis-
cussed In Appendix A, the traveling waves which propagate through the seqtuence of lenses
shown In Fig 2 can be expanded in the manner

E(x, y, z) g(z) f J (p, q)c k(Pr*qy4rn7)dpdq (aa)
p2 *q2 < 1

aNSRL RP.PORT 7661



WILLIAM H. CARTER

H(x, y, z) =g(z) ff JC(p, q)eik(px+qy+mz)dpdq, (3b)
p2+q2_<l

where

m= 1-_p2 .q2 . (4)

Each term in this expansion is a homogeneous plane wave modified by the complex gain
coefficient g(z) which arises due to the effect of the amplifying medium. As the amplifica-
tion is reduced, g(z) approaches unity but &(x, y, z) and g(x, y, z) do not change. In
this limit Eqs. (3) become an angular spectrum expansion for a field in free space. The
Cartesian components of &(x, y, z) and _(x, y, z) are angular spectra that are related by
the well-known expressions [6]

£(p, q) = [m x(p, q) m FY (p, q) (5a)
Ipq) 1

Rx (P, q) = T- M M PS [m, m (5b)

(p, q)= jo [ S m q2 p, q) + 1 p (p q2 (5c)

Xz(p, z q) =- [q x(p q)-pY ]q (Sd)

where

(6)

The complex gain coefficient in Eqs. (3) is given, as shown in Appendix A, by

g(z) = exp { n[( ) + ik) z (7)

if the medium is unsaturated, and by

g(z)= 1 + [(oYI2 _ 1) (2Lj] edkz, (8)

4
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if it Is completely saturated, The constants appearing in Eqg. (7) and (8) are defined by
the single-rss gain

,g(2t,) - jy111'2t. (D

The propagation eonstant Is given by

k .k'- !~2
C

(10)

where k' (k' << k) is a correction to an initially assumed value of k which Ic given from
the following analysis and is used to determine the resonance frequency of the Interfer-
ometer and where v7 -1F

The ixial gain approximation, used in Appendix A to derive Eqs. (3) through (10),
limit-c this analysis to fields thit satisfy two conditions First, the field must be well
collimated about the : axis (realistic if LIa >> 1) such that &(p, q) and ((p, q) are only
appreciable If p2 + q2 << 1. Second, the field must propagate with sufficiently weak
gain that g(z) is slowly varying Under this approximation the field distribution over any
plane perpendicular to the z axis is the same as it would be In the ahsence of the
amplifying medium, as evident from Eqs (3), and the traveling waves are amplified only
with increasing .

The mode equation, a Predholm equation with solutions giving the angular spectrum
for the fields ascoiated with each normal mode of the resonator, may now be obtnined
using this approximation. To proreed, we first transform Eqe (3) into the cylindrical
coordinates

p p cos 0, (11a)

Q - p sin 0, (11 b)

x * r coso, (lie)

y & r sin 0, (lid)

as deseribed in Appendix B, to obtain

where

on,(P) ft 2

ii -I-r~ L le,(P)e9AMnJ,(kpr)Pdp,

L lsten", f; P >(p.*M J(kpr)pdp

2W

L 8(p cos 0, p sin O)cVildO,
0

(12k,)

(121)

(I 3a)

6 ZL

CF
r 

-

D) P
Pr

E(r, iO, z) *! 2irg(z)

H(r, 0, r) er 2jrg(r)
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t n ~~~~~~~~~~~27r
h ) = j C(p cos 0, p sin 0)e-infdO (13b)

0

are coefficients in the Fourier series expansions with respect to 0 and n = 0, 1, 2, 3.
Next we substitute Eq. (12a) into Eqs. (1) to obtain the mode equation in the form
(Appendix C)

es)(p)= +(2L) | e(s)(p)e ikK 32 2 (-e )ik(r2+f2)12 Jn(kp'r)J (kpr)rdj p'dp',n I n fJ n 
(14)

where ens)(p) represents the x component of en(p), if s = + 1, or the y component, if
s = - 1.

The mode equation may be expressed in a more convenient form by making the
transformation

es)' (p) = efs)(p)v exp(i L) (15)

and rewriting Eq. (14) in the matrix notation (using the notation EA for a summation
of A over the continuous index p) PP

p

E Ep nen ] =inna [enn] (16)

with the complex symmetric matrix

MPP, =V' exp[ik (1 p +Vf/i72)L] k2 f; e( )ik(r2+f2)1/2 J (kpfr)J (kpr)rdr
0

(17)

and the eigenvalues

nn= ±g(2L) = 1ynn' e 'nn'N2 L =e innn'N2L (18)

The phase of 'Ynn' obtained from Eq. (16) is specified up to an arbitrary additive constant
N = 1, 2, 3- On solving Eq. (18) for iunn'N, we find that

2n Jynn' I , Rn I'Ynn' l + i[7rN - P('Ynn' )]1

anniN 2L + ik Inn' L (19)

where P(-ynn,) is the phase of Ynn limited to the range [0, 27r]. In addition to the
angular index n and the longitudinal index N, a radial index n', where n' = 1, 2, 3, ..., has

6
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been added to desrriminate among the many possible elgenvalues of Eq. (16). The state
of polarization for a mode is given by # as described below. Thus a particular field dis.
tribution, or normal mode, is specified by a set of four Integers (n, n', N, s).

The axial gain approximation is not new to resonator theory. In fadt It 1s used
Implicitly in all theories which use a free-spare diffraction integral, such aq the Fresnel-
Kirchhoff integral, to account for the propagation of the waves between the reflectors.
However an additional paraxial approximation which is usually uced to simplify the
Fresnel*Kirchhoff integral has been entirely avoided in the present theory by the uqe of
the plane-wave representation Therefore the present theory should be more accurate and
should apply to resonator fields that do not satisfy the restrictions Imposed by this
paraxial approximation.

The Cartesian components of the electromagnetic fields associated with any mode
given by (n, n, N, J) for an unsaturated medium are found by superimposing right, and
left-traveling waves from Eqs (3) to form the resonator standing waves, transforming to
cylindrical coordinates using Eqs (11), and making use of Eqs. (6), (7), and (13) as
disrucegd In Appendix D. For the mode (n, n', N) which Is linearly polarized in the x
direction (for which we arbitrarily set the index s *1). the field is given by

IE( 1n.k(r, O, i)}

I

- 4 n+1e1,^ f e(+,)(p)e &-n&NtIS[(k/fj p2 + )(z l

X J (kpr)\/dp,

W 0,

e 29I"-1 4,, e Y (*1r(p)einn' tC[(k ; - P nn.N)(z - L)J
0 n )1-P +Cn'

(20c)

w)n-'I )C 4 r - 14at - C^ , .e1 (p)c'vnnl Vt C[(k /i -~nN( L)l

x JV4 2(kpr)e'2 0 _n-2(kpr)en- 12 1 PV2 % dp

%r ::p 
(20d)

(20a)

(201))

7

X -J1,_,(kprY-111j p�,rp_ dp
�,fi -_P i

4 1

-)Iy

E(410r, O, 2)I nn, I

IWO k (r. 0, -IRn,
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{Hln+nt(r, ¢\ z)j = z e'~ J en) (p)e iaf NLC[(km + e.nnN)(z-L)]

0

X - [Jn+2 (kpr)ei2o + Jn-2 (kpr)e-i2 O] p2/7
t 1 ~~~p2 | 2

2 ~ ~ ~ vi~

+ 4Jn(kpr) Jpdp, (20e)

{H~nkn(r, Z)j. = 2iri' 4 ein_ en+n9)'(p)eiann'NLS [(km + flnnfN)(z - L)]
z0

X [J,+1 (kpr)e~'ie + J, 1 (kpr)e-'(] pv/dp, (20f)

where

S(Q) = - i cos (0), if N is odd, (21a)

= sin (Q), if N is even, (21b)

C(Q) = i sin (Q), if N is odd, (21c)

= cos (Q), if N is even, (21d)

and where a n'N is defined by Eq. (19). Modes of arbitrary polarization are found from
Eqs. (20) by adding the field components for the complementary (n, n', N) mode which
is plane polarized in the y direction (s = - 1). The field components for the y-polarized
mode can be found simply by performing a coordinate rotation on Eqs. (20).

The fields in a saturated medium are somewhat different. For example the trans-
verse electric component for the (n, n', N) mode which is plane polarized in the x direc-
tion is given by

{E(+(rs, Z)}x = 27rineinf f; e+,1~)(p)eik nn'NL { + (IYn'1 2 Z

0

X exp [i(k p/i + k nn'N)(z -L)] + 1 + ('Ynn'12 -1) (2L -z)nn'N)(z ~~~~2L

X exp [i(kV\/TWp2 + k'nnfN)(L - z)]} Jn(kpr)\/pdp, (22)

where the derivation follows in the same way as that for Eq. (20a), but by using Eq. (8)
in place of Eq. (7), as discussed in Appendix D.

8
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The mode field in Eqs (20) or (22) is still arbitrary up to an overall constant
amplitude, which Is determined by normalization of the angular spectrum e(Cnik(p). A P
particular normaliz7ation convention will be specified in a later section in a manner ap.
proprilate for the quantum theory of laser resonnator fields,.

The elgenvalues q ynnl given by Eq. (18) are equivalent to those appearing in the usunl
reronator theory and provide useful information about the modes The fraction de of the
electromagnetic energy lost by diffraction as the waves travel from one reflector to the
other Is given by

dc e(I -(I .I12), (23)

juct as In the conventional theory (3, Eq. (81)]. The phave of 'y . specifies the resonant
frequency for the mode. The frequency for the (n, n', N, s) moe, as given by subtittu-
tion from Eq. (19) Into Eq, (10), Is

Wnn's' * c(k * k ', ̂ ) -k + , P(Ynn-)] (24)

To employ Eq. (16), we muct first assume a frequency ck close to resonance and then
uce Fqc. (16) and (24) to obtain the precise frequency wnn N The assumed frequency is
in effect pulled by the resonator an amount given by the frequency shift

linnN- ck [rN - P(Ynn'.)]
df - 21k (26)

which follows directly from Eq. (24).

The longitudinal mode number N Is not the same as the usutnl longitudinal mode
number N, which Is defined to be the number of half wavelengths In the length 21, but
is related to It by

2tw___ 2thk - P(C- (26)

according to Eq. (24) (3, Eq. (81)1. For most resonator fields, N' as defined here is not
an Integer but approaches an integer with increaeing 2t/a.

The fields associated with the modes with even N produce transverse electric com-
ponent-, which vanish over the 2 a L plane according to Eqc (20). Thus these are also
the fields of an asymmetric resonator with an Infinite, plane reflector of unit reflectivity
in the z a L plane.

NUMERICAL CALCULATION OF THE MODE FIFLDS

The transverse electric component of the field for several of the lower loss modes in
resonntors that are either confocal, spherical plane parallel, or unstahle has been evaluated
numerically through the use of the equations derived in the last section. It has been
calculated only for modes which are plane polarized, circularly symmetric (n * 0), and of
fixed longitudinal order (V' t 40). However, the same procedure can be employed to
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study other modes and other Cartesian components of the fields. Resonators were chosen
for this study with dimensions a = 5X and L = IOX (where X = 27r/k). These resonators
could not be treated by the usual resonator theories, because they do not satisfy the
restrictions imposed by the paraxial approximation.

The procedure used is relatively simple. First, the elements of the matrix given by
Eq. (17) are determined for a particular set of resonator parameters using Simpson's rule
to numerically evaluate the integrals. Second, the matrix is diagonalized using the IBM
Share subroutine ALLMAT, which has been tested extensively in a similar application by
Sanderson and Streifer [10]. The resulting eigenvalues 'y,, are used to determine Oann'N
from Eq. (19), and the eigenvectors ef+P)(p) give the angular spectrum for the (n, n', N)
mode. Finally, the field components associated with the (n, n', N) mode in an unsaturated
medium are found by substituting k'fl.N and e(+)('p) into Eq. (20) and integrating
numerically using the trapezoidal rule. Similar modes for a completely saturated medium
are obtained using Eq. (22) in place of (20a).

The matrix is represented to the computer by a 50 by 50, single-precision, complex
array. Tests conducted by varying the array dimensions (up to 100 by 100) indicate that
no serious sampling errors occurred in calculating the fields described here. However, for
significantly larger resonators with larger Fresnel numbers,

ira 2

> 5ir, (27)

serious sampling errors do occur.

Confocal

kR20X 

Fig. 3-Confocal resonator studied
in this work

The three radial modes of lowest loss have been examined by this procedure for the
small, confocal resonator shown in Fig. 3. Isometric drawings showing the transverse
electric component, that is, the magnitude of {E,'N (r, 0, z) Ad over the region where
0 < z < L, for these modes are shown in Fig. 4 for an unsaturated medium. Since the
fields are symmetric about the z = L plane, only the fields to the left of the plane are
shown. The energy loss per pass de and the frequency shift df for these modes are also
shown as determined from Eqs. (23) and (25). The energy loss is seen to increase
anomalously fast with increasing n' from only 1.39% in the first (lowest loss) mode to
65.6% in the third. It is also evident that the modes become increasingly irregular as the
loss increases. By irregular is meant the rapid irregular spatial variation of the envelope of
the otherwise orderly standing wave pattern shown in Fig. 4c. This does not occur for
instance in the standing-wave pattern shown in Fig. 4a, and it is very slight in the pattern
shown in Fig. 4b.

10
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0

(a)

0

(b)

0

L

(C)

Fig 4-lsormntric Projeetiont showing the spatial distributiont for the tranm
etsse 0octric field over the confocal rennstor shown In Fig S. (a) The first

(Iowett lost, eytindrically symmetric) modr, with n * 0, n' w ), N' - 40, and
** *1. (b) Thb seeond (sarrnd lowett loss cylindricnlly symmetric) mod.,

with n * 0, n' * 2, NK * 40, and a - +1. (c) The third (third lowt Iob,
CylindricTally symmetrlc) mod'e, with n * 0, n' * 3, N' - 40, and s * 41.

Similar modes were examined for the spherical resonator shown in Fig. 6, and iso-
metric drawings of the transverse electric components are shown in Fig. 6 for an un-
saturated medium. Th7e radial modes in this spherical resonator are seen to have losges
that increase even more rapidly with n' than those for the confocal resonator. The
associated irregularity of the field is evident in Figs. 6b and 6c. The calculations were
repeated for a spherical resonator of the same proportions but of twice the size. For the
larger resonator the modes are similar to those In the smaller resonator, but the losses
incremse murh more slowly with n', and the fields are not as irregular.

0

0

0

11 4=1
ZW
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OL^
4^
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rr,
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Spherical

h=X L IOX-3

Fig. 5-Spherical resonator studied
in this work

1,,,,,,.o

0

(a)

-4 , A A'.5~d e5.5%

2 y {r:x -4- . .: de.'.;,.U ' 45.5% .
a df =578%

0 L

(b)

{1}X To~~~~~~~~~~~~~

0

(c)

Fig. 6-Isometric projections showing the spatial distributions for the transverse
electric field over the spherical resonator shown in Fig. 5. (a) The first (lowest loss,
cylindrically symmetric) mode, with n = 0, n' = 1, N' - 40, and s = +1. (b) The
second (second lowest loss, cylindrically symmetric) mode, with n = 0, n' = 2,
Al - 40, and s = +1. (c) The third (third lowest loss, cylindrically symmetric) mode,
with n = 0, n' = 3, N' - 40, and s = +1.
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In this work
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Fig 6-Isometrle prjectlon showing the spatial distributions for
the tranmerse electrle field over the unstable resonator shown in
Fig 7. (a) The first (lowedt lo*, cylindrically symmetric) modr,
with n - 0, n' - 1, N' * 40, and a * +1. (b) The second (second
lowed los cylindrically symmetric) mode, with n a 0, n * 2,
A' - 40, and* a .1

The two lowest loss radial modes were also examined In the unstahle resonator
shown In Fig. 7. The ieometric drawings of the transverse electric field for these modes
are shown in Fig. 8 for an unsaturated medium. Both modes clearly show the rapid
irregular amplitude variations which are well known to be characteristic of unstable
resonators [11]. By com-erison of Figs. 8a and 8b to Figs. 4c, 6h, and 6c, it Is evident
that the irregularities observed in the modes for the confocal and spherical resonatorg are
similar to those known to occur in unstable resonators.

It appears likely that the anomalous behavior of all of these modes is astociated with
the onset of mode instability resulting from high diffraction loss In these small resonators.
Although the eonfocal and spherical resonators are stable according to the utual geometrical
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theory used to describe mode stability, this theory does not account for diffraction loss.
Therefore it is not surprising that when diffraction loss is taken into consideration, any
open resonator may show some instability if it is sufficiently small relative to the wave-
length of the field. This agrees with the observation that the modes were less irregular in
the larger spherical resonator than in the similar resonator half the size.

Plane parallel resonators examined in this manner produced an interesting confirma-
tion of the mode equation. For a plane parallel resonator with the dimensions a = 5X
and L = 1OX used in this work, the matrix in Eq. (17) is nearly diagonal. In fact, if we
set

exp [Tik(r2 +f2 )I = 1 (28)

in Eq. (17) and let a -e oc, we obtain the diagonal matrix

Mpp,= 6 (p - p') exp (i2k l - p2L). (29)

t
Thus plane parallel interferometers with infinite reflectors have modes that are plane
waves in agreement with the early Fabry-Perot theory [12].

Many of the numerical calculations were repeated for the modes in a saturated
medium using Eq. (22) in place of (20a). The distribution of the transverse electric com-
ponent of the field is similar in each case to that obtained for the unsaturated medium.
Therefore, within the axial gain approximation, where spatial hole burning is neglected,
saturation appears to have very little effect on the fields. Typical results for the trans-
verse component of the electric field, with and without saturation, are compared in Fig. 9.

MODE QUANTIZATION AND NORMALIZATION

It is frequently assumed that the modes in an open resonator in the absence of the
amplifying medium can be quantized in the same manner as those in a closed resonator
[13, Eq. (21), or 14, Eq. (2.2)]. In this section this assumption is shown to be valid for
paraxial fields. The mode amplitudes are determined by a normalization condition im-
posed on the angular spectrum by the quantum formulism.

Physical fields are real functions of time; thus, to describe a field with precision, we
must drop the analytic-function representation used in the earlier sections. Each Cartesian
component associated with the (n, n', N) mode is described by an expression of the form

U(x, y, z, t) = 2 1 [annfN(t)Unn'N(X, Y, Z) + ann'N(t)unfn'N(x, Yz)I, (30)
nn'N

where unnN(x, y, z) represents the spatial distribution of a particular Cartesian component
as given by Eqs. (20), and annfN(t) represents the time-dependent amplitude of the mode
which is common to all of the Cartesian components. This amplitude is very nearly time
harmonic with radial frequency wnn'N'

14
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To quantize the resonator field in the usual manner, we show that each mode be-
haves mathematically like a harmonic oscillator, so that the well-known quantum theory
for this ocsillator can be used. We begin by calculating the total energy stored in the
resonator,

2ir 2L:

X = 8-JoJJt; -!; [eE(x, y, z, t) * E(x, y, z, t) + u H(x, y, z, t) -H(x, y, z, t)] dzrdodr,
0 0 0

(31)

in which each Cartesian component must be expressed in the form given by Eq. (30).
The vacuum resonator field for each mode in the absence of the active medium, is
obtained from Eqs. (20) by replacing k /7 + GnnN by k n'N/ with (knn'N =
wnn'NIc). The axial gain approximation is now discarded, so that these expressions for
the vacuum resonator field follow rigorously from Maxwell's equations. For the most
general resonator field the Hamiltonian IC is obtained by substituting the vacuum field
for each mode from Eqs. (20) into Eq. (30), then substituting from Eq. (30) into Eq.
(31), and summing over all modes. After considerable algebra, and the use of paraxial
approximations, as discussed in Appendix E, we obtain the expression

2 hcE M[aM(t)a*(t) + a*(t)aM(t)1. (32)
2 ly M M M

M

where M is a simplified notation for (n, n', N, s) and the angular spectrum is normalized
in the manner

h3

let)'(p)1 2 2 + dp = M- (33),( 1 (S)2} )12 ( f ) (27r2ec2 L) (

By substitution from the definitions

aM = c()MqM + ipM), (34a)

am = (c)MqM - iPM)' (34b)

Eq. (32) becomes

2 24q 2 (35)M2 . Pk + WMqM
M

16
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The Hiamiltonian in Eq. (35) is Identical with that for a collection of uncoupled harmonic
oscillators, each with a displacement given by q., and a momentum given by P I (I6n,
1M). It Ik clear from Eq. (35) that the fields In an open resonator obey the classcial 
equation of motion for a harmonic oscillator:

Mp,,'a ~ (36n)
8PM atPOW,

ay - -P :C v

aq at cM~, 3h

Now that we have estahlished the similarity between each mode In the general
resonator field and a classical harmonic oseillator, the field may be quantized In the uslnl
manner. Consider any function f of qa and p. with the total derivative

df(qt pW) [dqt a
dt l dt 8qvU

dpM_ a
dt OM

The equation of motion for f, upon substitution from Eqs. (36) Into Eq. (37), becomes

df (q' f I q1, p,), X I _ _ .
dl at~~,1 ),(

M aPtMB at a,,

is the Poisson bracket of f and Y. The field is quantized by replacing the elassical func-
tions f and X in Eq. (38) by the Hilbert space operators f and If and replacing the Pols-
son brackets by I/Ml times the commutator brackets jf, EJ 115h] to obtain the Helsen-
berg equation

er_ _ '_m I P ___ I __

dt . N[ "'PM' km) * at (40)

This is the quantum-mechanical equation of motion for any operator j which is a func-
tion of the operators j. and PM-

In this formulation the mode amplitudes a. and av in Eqs. (34) are replaced by the
operators am , - (, + ),

a A~q~ff PW)- (37)

where

(88)

(39)

(41 a)
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= 1 ("'MqM - RPM)' \(41b)

which obey the commutation relations

[aM, S'] MM' (42a)

laM aGMS ] [aM ' aiM] =0 (42b)

and act as annihilation and creation operators, respectively, on the Mth mode of the Fock
space vectors representing the energy eigenstates. That is [15c],

aM I {n}, nM > /M I {n nM- , (43a)

atI{n}, fM>= \/i I{nf},nM + 1>. (43b)

(The notation {n}, nk > indicates a Fock space vector for a system of many energy
levels. One particular level of interest, the Mth level, contains nM quanta; the occupation
of the other levels { n} are not of immediate interest and are not indicated.) Each
Cartesian component of the field in Eq. (30) is represented by the configuration space
operator

U(x, y, z, t) = 2 E [aM(t)uM(x, y, Z) + at(t)UM(x, Y, Z)], (44)
M

which may be used to calculate the various observable parameters associated with the
field.

Scully and Lamb [171 have obtained a closely related expression for the electric
field in a later resonator which they use in studying the detailed dynamics of the resona-
tor field coupled to an amplifying medium. It is interesting to compare an expression
derived from Eq. (44) with theirs. In their work they are concerned only with the field
in a resonator with plane parallel reflectors, which is described using a simplified mathe-
matical model. For example their electric field operator [17, Eq. (29),] is given by an
expression which in our notation becomes

E(x, y, z, t)} = N [sin > , (45)

A more general expression for the x component of the electric field in a resonator is
derived from our work by substituting Eq. (20a) into (44) giving

{E(x, y, z, t)} 47r 21 in+1eintaM(t)j e' (p)S[(kMN/IITp)(z - L)]

X Jn(kpr)Vp'dp + h. }, (46)
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where hA signifies a term which is a Hermitian conjugate of the other term in the braces.
By comparison of Eq (45) with Eq. (40) we find that our theory leads to the field
operator of Scully and Lamb, if we make the following approximations in Eq. (4(). Let P
the reflectors be plane with large radius a and assume that only one axial plane wave
contributes to each mode-

1(p)' I3f 6(p) (47)
4ir_2cc2L %/(47

Also, we will neglect all modes which are not rotationally symmetric, so that n 0, and
we will use the pnraxial approximation given by Eq (E3):

(kin I 1 (4 a)

Equation (46) then becomes

Iak!(t a.isin (N'w49){e(X, X, Xt or 2jrE ,,t) t )]sn[ 1 ()It 4 2Cc2L' 2L, '(9

Equation (49) is Identical with (45) except for a con.stant scale factor

(V2- ks )

which Is due to differing field normalization. A problem arises with these idealized mode
fields however which becomes evident upon substituting Eq. (47) into (3.1). The angular
spectrum cannot be properly normalized due to the infinite energy of the single plane
wnve. This problem, which was overcome by Scully and Lamb by neglecting the field
over the domain r > a, does not occur In our theory if the resonator fields decay away
from the axis such that they have finite energy.

In out work only homogenous plane waves are included in the angular spectrum.
For the most general fields evnnescent plane waves should also be included [18].

CON'CLUSION'S

Thie new open resonator theory developed in this report has several advantages over
the theories which employ the Fresnel-Kirchhoff diffraction integral Its primary
advantage is that it applies to resonators in which the field cannot be treated in the
pnraxial approximation. This theory also leads more easily to a full electromagnetic treat-
ment of the field On the basis of this theory the components of all the field vectors
may be determined numerically over the entire resonator in three dimensions This has
been demonstrated for the transverse electric field in several different resonntors.

The primary limitation of this theory is the use of the axial gain approximation.
Under this approximation the fields behave as free fields over every crosc sectional area
transverse to the axis Thils same approximation appears, in one form or another, in all



of the currently known open-resonator theories, and it is a serious limitation. This is
especially true if saturation effects are to be considered.

We have considered the effect of complete uniform saturation on the mode and
found it to be slight. Unfortunately the important effect of spatial hole burning could
not be treated with this model. Thus we can only conclude that the primary cause of
field changes in the presence of a saturable medium is the result of these holes.

The numerical data for the transverse components of the electric field obtained on
the basis of this theory indicate that mode instability occurs in very small confocal and
spherical resonators which have dimensions the order of a few wavelengths. This con-
clusion is supported by tests with larger resonators in which the apparent stability is im-
proved. Since the geometrical theory by which these resonators are shown to be stable
neglects all effects due to diffraction losses, it is not surprising that it appears to fail when
the resonator has dimensions the order of a few wavelengths.

We have also shown how the resonator fields given by this model can be quantized.
The quantized field is described by a formulation very similar to that usually used to
describe the field in a finite closed resonator. The configuration-space field operators
obtained here reduce to those obtained from the simplified mode theory of Lamb and
Schully for a resonator with large, plane parallel reflectors. Although the axial gain
approximation was used to obtain the fields in the presence of the active medium, the
vacuum fields which were quantized do not depend on any gain approximations. The
quantum theory is derived however using approximations which are valid only for paraxial
fields.

The numerical data presented give a much clearer picture of the spatial distribution
for the transverse electric field inside of such resonators than have been previously avail-
able.
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Appendix A
PROPAGATION OF TRAVELING WAVES IN AN AMPLIFYING MEDIUM

An approximate representation for a traveling wave propagating through an amplify-
ing medium can be obtained as follows. The real electric field Er(x, y, z, t), the polariza-
tion of the medium P(x, y, z, t), and the population inversion per unit volume N(x, y,
z, t) are related under frequently encountered conditions by the nonlinear differential
equations*

y~(, y'Z, t) 2 a P(x, y, z,'t) + CjpX y' = -2wo It,12 12
a2P(Xs 2Y, Z. t) + w aP~xxaty Z,'t) + ,x,2p(x, ys z, t) = -ht L -- N(x, y, z, t)Er(x, y, z, t),

at2 T2 at3
(Al)

aN(x, y, z, t) + N(x, y, z, t) = 2 aP(x, y, z, t), (A2)
at =,1C at

VX (V X Er(X, y, z, t)) + NA aEr (X, y' Z, t) + w2 a 2 Er(x, y, z, t) a _ 2 Ptx y z t)
c at 2 at2 at2

(A3)

where 77 = \/I7e. The material constants T1, T2, L, '1221, N', and A, which Pantell and
Puthoff* discuss in detail, are respectively the longitudinal relaxation time, the transverse
relaxation time, the Lorentz correction factor, the matrix element of the dipole moment
operator coupling the two states resonant with the field, the equilibrium population in-
version per unit volume, and the power attenuation constant.

We begin by assuming that the field and the polarization are time harmonic and can
be given by

Er(X, Y, Zy, t) = 2 Ig(x, y, z)IE 0(x, y, z)e-wt + C.C., (A4)

1
P(x, y, z, t) = 2 P0 (x, y, z)e-iwt + c.c., (A5)

where Eo(x, y, z) is the free field which remains if the coupling to the medium vanishes
and where c.c. indicates the complex conjugate of the preceding term. The population
inversion per unit volume N(x, y, z) is assumed to be time independent. Thus, upon
substituting Eqs. (A4) and (A5) into (A2) and making use of the rotating wave approxi-
mation, we obtain

*R. H. Pantell and H.E. Puthoff, Fundamentals of Quantum Electronics, Wiley, New York, 1969, p. 86.
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N(x, y, z) - h% I 2 ilg(x y, Y)iE (X, y, z) Po(X, y, *) + c. C.

By similarly substituting Eqs (A4) and (AS) into (Al), we have

P y h2 L y2 y
Po (x, y. z)e L -j-- N(x, y. z)ig(x, y, z)1E0 (x, y, a). (A7)

Tle population Inversion can now be obtained by suhstituting Eq. (A7) into (AM) to
obtain

l((x. y. ) )

(Th2) L ( 1 2 ) I(x, y, 2)

where I(x, y, a) Is the Intensity of the light as defined by

I(X' Y. S) 8 2c 1gx, Y, c)llEO(x, Y, 012- (A9)

(AR)

By substituting Eqs (A4), (AS), and (A7) into (A3), ae.4uming that g(x, y, z) Is sufficiently
slowly varying that terms containing Its second derivatives can be neglected, and by
separately equating the positive and negative frequency terms, we find that

Vig(x, y, ,)f X jV X E0 (x, Y. Z)] - IV I(X, Y, *)1 .VIE 0(X, y, Z)

- - I C[ L a!3 N(x, y. ) - 4] Ig(x, y, z)1EO(x, Y. a). (Al O)

In deriving Eq (A10) use Wsm made of the fact that the free field Eo(x, y, z) sntisfies the
usqual wave equation

V2 EO(x, Y, a) + - 1 iE0(X, y, Z) 0 O (Al 1)

and also the equation

V * E,(x, y,*, t) - 0. (A12)

For the larer resonator under investigation we are concerned with a traveling wave
propag tIng down the : axis:

E,(x, y. z) (x, Y o.klz . (A1 3)
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We assume for the purpose of representing the gain factor g that the vector e(x, y, z) can
be treated as transverse to the z axis and slowly varying relative to the exponential in
Eq. (A13). In addition we make the axial gain approximation by assuming g is a function
of z only. Upon making these approximations and substituting Eq. (A8) into (A10), we
obtain

_YO _(0) +sat _ Al Ig(x y, z)I, (A14)

where Is is the intensity required to saturate the medium,

Isat 2 (2TJ2

-7e0c
(A15)

( P2 1 )
L ~3

hwoNe 1
=O 2T1 1(0) +Isat

is the gain at z = 0.

If the medium is completely unsaturated such that I(x, y, z) << Isat
by solution of Eq. (A14) that

Ig(z)l =exp { 2L }

(A16)

then it follows

(A17)

where we have taken the gain in the z = 0 plane to be g(O) = 1, and where the gain in
the z = 2L plane is given by the constant

(A18)1Y1 = WWII = exp |[2 1 - 2-A 2L2 -

The modes of a resonator exist only for certain values of k. To determine these
values of k from the eigenvalue analysis in this report, it is convenient to define the com-
plex gain factor given by the expression

g(z) = exp {VnbyI +ik] z} (A19)

Thus the magnitude of g(z) is the true gain factor as given by Eq. (A14), and the phase
represents a correction to k in equations of the form

Er(X, y, z, t) =g(z)e(x, y, z)ei(kz-w t) + C.C.

alg(x, y, z)I _

az

and

24

(A20)
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The phate of g(z) specified by the elgenvalue analysis In this report Is such that Et(x, y, z,
1) as given by Eq. (A20) has the proper wavelength for a pnrticular resonator mode.

If the medium is completely saturated such that I(x, y r) >> I , then a simple r
solution may still be found for the nonlinear differential equntion inXq. (A14) If further
approximations are ade. We asccume that I(x, y, z) in Eq. (A14) can be approximated
by

I(x, y, z) * I0 g(z)12 . (A21)

This is valid only If spatial hole burning (spatial varlations in g due to spatial variations In
F0 (x, y, z)) are ignored If we also ascume that the effects due to absorption can be
ignored by setting A * 0, then Eq. (A14) has the approximate solution

(A22)1001 -+ (I~I2 _1)z]
H r w h ven ) l a + I ( A) b

Xlere we have agnln taken g(O) - I anti replaeed Eq. (A18S) by

1I Ig(2t,)i - 1 4
21, 0I 1(0) + It '

'0

The linear intensity gain predicted by Eq (A22) is in agreement with the experimental
data of Allen and Peters*. To allow for the adjustment of the wavelength to satisfy the
requirement of the resonator mode, we again define the complex gain factor by

g(z)e I [(1h12 - 1)1 1k'z
I (2L) Ie (A24)

We have found in this appendix that the fields are given within thisc approximation
by the empty-resonator traveling waves multiplied by the complex gain factor g(z).
Therefore, by expanding the source-free fields of the empty resonator Into an angular
spectrum of vector homogeneous plane waves In the conventional mannert, we obtain
the field equations employed in this report:

E(x, Y, Z) ' g(z) JJ j(p, g)eA(pjqym7)dpdq,

H(X, y, g) ft Vz) ff ;(p q)ea'(PY~qY~m2)dpdq,
pt'q2< I

(A25a)

(A 25b)

with the exp (- cit) time dependence suppressed

'1. Allen and 0.1. Petere, J. Phy-. A4. 661 (1971)
tG. Borgiotti, Alt* Frequpn?* 32, OR (19631

(A23)



Appendix B
ANGULAR-SPECTRUM EXPANSION IN CYLINDRICAL COORDINATES

An angular-spectrum expansion, like the integral appearing in Eq. (3), can be trans-
formed into cylindrical coordinates. In this appendix this procedure is described for the
more general case where

U(x, y, Z) = ff 'U(p, q)e ik(py+qy+mz) dpdq,

with

m =1/_p2 _q2, if p 2 +q2 1,

. p2 +q 1, if p2 +q2 >1.

Substituting Eqs. (11) into (B1), making the Fourier series expansion

'I t (p cos a, p sin O) = U(p, n)eino
fl=-0

(B1)

(B2)

(B3)

and interchanging the order of summation and integration, we have

(B4)U(r, 0, z) = 21 u(p, n)eikmz eikprcos(6-o)+in6 dOpdp.

gn=-n o E

One integral appearing in Eq. (B14) is easily evaluated to give

(B5)

21rf e ik pr cos (o -0)+inO dO = 27ri± nJ n(kpr)e+in
0~~~~~~~~~~~~,

by stubstituting the generating function*

eit cos(o-0) = 21 in 'e"(° ( ),

n'=_

(B6)

*See Eq. (a.1.41) in Handbook of Mathematical Functions, M. Abramowitz and I.A. Stegun, editors,
Government Printing Office, Washington, D.C., 1964.
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where t may be complex. Finally, by substituting Eq. (135) into (I1l), we obtain

U(r, 0 z) ft 2;; A
n-

gt fetn1, f u(p, n)e *UmJ, .(kpr)pdp,

cl

27 o

P-

(137) 

where

mf7 2 _2, if p < 1, (DA)

* I. 4 / -_, if p > 1,

and where either the upper or lower signs may be used. Equations (12) follow by s1b-
stituting U(r, ¢J, z) from (137) for the integral in Eqs. (3), after selecting the upper sign
and limiting the range of integration In (137).



Appendix C
DERIVATION OF THE MODE EQUATION

In this appendix the mathematical procedures leading to Eq. (14) are described.
Substituting Eq. (12a) into (la) for the x component gives

21r i ein'e f e(+l)(p')J (kp'r)p'dP

00 1~~~~~~~n'= Jo -( r

±27rg(2L) E i" e"'' J e($')(p' )eikJf 2LJ ,(kp'r)p'dp'e(+)ik(r 2+f2 )1 2 circ( -a)

(Cl)
Next, we multiply Eq. (Cl) by a function

eiinf0Jn(kpr)r, (C2)

integrate over all 0 < r < oo and 0 6 0 < 27r, and interchange the order of the integra-
tions to obtain

27r i|;e(n~l)(p ) L i(n'0 d4)¢f i;n'(kp r)Jn(kpr)rdr p dp' =±27rg(2L)00 p~~~~~~~~~

2w e~~' 2i =±ir(

X j in' f[ e(T1)(p')eikj1T22L ' ei(n'-n)O dO

n'=-

X fa e(:)ik(r2+f2)1I2Ji(kpfr)Jn(kpr)rdr] p'dp'. (C3)

0

Finally we use the identities
27r

ei(n'dn)Odk =21rnn (C4)

and*

fJn(kp'r)Jn(kpr)rdr= 5(p P )
0 ~~~~~~(k2 p) (C5)

*P.M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953, p. 943.
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in Eq. (C3) and obtain the mode equation for the x component of e,(P):

*l ) (2L) J e!l )(p §* s i72 1. 2 I.! yk (r2 r21 (k rd pe(41)(p) e J,~[ .1(kp'r)J,(kpr)rdJ pdp'.()

In the same manner an identical mode equation may be derived for the y component of
*n(p). Thus we generali7e Eq- (C6) to the form of Eq. (14) by replacinrg e,'1)(p) by

eC')(p), where the x component of the angular spectrum is indicated if s & +1 and the y
component if e -1.
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Appendix D
DERIVATION OF THE FIELD EQUATIONS

:~~~~~~~~~~~~~

In this appendix we derive Eqs. (20) and (22) for the components of the resonator
field.

The standing waves inside the resonator are obtained from the traveling waves as
follows. The traveling waves propagating to the right are combined point by point with
an identical set of traveling waves moving to the left. These traveling waves are combined
such that the appropriate boundary conditions at the reflectors are satisfied. For example,
if the plus sign is taken in front of Eqs. (1), the transverse electric component associated
with the waves travling to the left must be subtracted from the similar component
associated with the waves traveling to the right so that the transverse electric component
vanishes at the reflectors. Similarly, if the negative sign is taken in front of Eqs. (1),
these components must be added instead so that the transverse electric component of the
standing wave vanishes at the reflectors. Thus, using Eq. (3a) we obtain the expression
for the x component

{ E'N (x, Y, z)} 00 fJ
p2 +q 261

&x(A q)eik(px+qy) [g(z)eikmz Tg(2L - z)e ikm(2L-z)] dpdq,

(Dla)

where either the upper or lower sign is taken as the upper or lower sign in Eq. (1), or
equivalently as N is even or odd respectively. This connection between the sign conven-
tion and the parity of N follows from Eqs. (18) and (19).

The other Cartesian components of the standing wave, which are also found using
the appropriate boundary conditions at the reflectors, are given by

{ .(xy, z) = If
p2 +q 2 <_1

{ Ens'N(x, y, z)l = J

p 2 +q 2 _< 1

{ H(ns) N(x, Y, z)l = ff
p 2 +q 2 < 1

y (g q)ek(Px+ y) [g(z)eikmz"g(2L - z)eikm( 2L-z)1dpdq,

(Dib)

, (p, q)e ik(px+qy)[g(z)eikmz±g(2L - z)eikm(2L-z)] dpdq,

(Dic)

JX (p, q)e ik(px+qy) [g(z)e lkmz+g(2L - z)eikm(2L-z)] dpdq,

(Did)
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{nHfn"(x. y, z)} r fJ X((p, qOa(P'r;qY)(z)e m VW, -Z)gm2r-2)jdpdq

rp2lqZ< I (DiCe)

H(0t)-,(X- Y. 2)} t J (p, q},*(Pr1qy)g(R.Z)X*S,-jg(2j' Z) km(2L-Y)

{ } p2.q20 1 (a1 -

P ~~~~~~~~~~~~~~(DI)If)

The validity of these six equations can be varified in the limit of zero gain (g 0 O) by
directly substituting them into Maxwell's equations for free space*.

Siner the derivation of all of the Cartesian components, in Eqs. (20) and (22) follow
from Eqs. (n)) in etsentially the same manner, we will give the derivation of only the z
component of the electric component astsoiated with the field in an unsaturated medium.
To obtain this component, we amssume that the fields are plane polarized in the x direc-
tion so that C e 0, substitute Eq (5a) into (Ie), substitute Eq. (7) Into (1)1), and
transform the result into cylindrical coordinates as given by Eqs. (11). We then find that

{ E~(nnlr, O. :)} r - if1 e("+l)(p,.^Jt'@nn7'N')IC[(km 4 OtnNt( -L)I

xJ Ie:o°)i "n 'tt, erPCt)i(nI'p jdO dp,
o (D2)

where C(Q) Is given by Eqr. (21). The Integral over 0 is evaluated using Eq. (135), so that
upon substituting Eq. (16) we have

E(1 En.(r, 0, itE o Z"-e` l;e(* (p)rfltnn'KtCI(km + a,,.N)(z - L)J

X !p(r~ril -Jn (kpr)c-e j Arp Ar (3

The other field components In Eqs. (20) are found in exactly the same way. The com-
ponentk In Eq, (22) are found in a similar manner, except that Eq. (8) Is used in plnce
of (7).

SSee 0 Borrlnttl, Alta Frequetna 82, 8O (1961)

Si



Appendix E
THE RESONATOR-FIELD HAMILTONIAN

The classical Hamiltonian for the most general resonator field is obtained by sub-
stituting Eqs. (20) into Eq. (31) and summing over all modes. In this appendix we will
carry out this calculation.

To simplify the algebra it is useful to separate Eq. (31) into a sum of terms, each
containing the energy contributed by one Cartesian component of the field. To obtain
the energy contributed by the x component of the electric field associated with the field
plane polarized in the x direction, we sum Eq. (20a) over all modes, set k1p +
k'nn'N = knnNl (where knn'N is real), and substitute it into Eq. (31). We then
find that

E lf L ,; r | 00,{E(1k(x Y, z, t)} IEmmM(X, y, Z. , rdrdodz
nn'N o x xm~~~~,t~d~

mm'M

= 2 E{in m+ann'Namm'M | f'l)P4dJe2(P')vpw\/dp' f 2irnm)
nn' N o o

mm'M

2L
JX f S[(kv -_p2 + k' N)(z -L)IS[(kV 1-p 2 +2k'mmM)(Z L)]dz

X | Jn(kpr)JM(kpSr)rdr + c.c 

0

+ 2r e L {in manni amn *2 T-i LnnN MM
nn'N

mm'M

1; fnin'(p)p dp f [e(+') (p )] p dp' ei(nmm)Odoj e ~ ~ I Y ~ p ~ x / ~md p

2L

X S.[(knnNV1 -p2)(z - L)]S[(kmm'M 1_p 2)(z - L)]dz

x f|;Jn(kpr)Jm (kp'r)rdr + cc .
0~~ 

32
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The 0 integration is evaluated with the help of the identity in F1 . (C4). The Integra-
tion over r is carried out using Eq. (C6). After the integration over p, only terms for
which p e p are nonvanlshing. The integration over z can be carried out using P

|; S(knn`KV"1 - I)1S((kmm.M )/i:(Z L)]dz * L6nm 6 n'm'6XitA (c2)

ThiS equation follows from Eq. (C4), provided that the integral extends over the domain
of orthogonality for the sinusolds. This Is not generally the case; however, if we assume
that e(')(p) can be taken to be zero outside of some domain where p << 1, then we find
from {q. (2M) that

nn'm P2 (2L) (E3)

By substituting Eq. (E3) Into (E2) and assuming that N' can be approximated by an
integer (valid for paraxial resonator fields), we find that the integral extends over the
domain of orthogonality for the sinusolds.

After evaluation of the Integrals In Eq. (El) and after some reduction It takes the
form

- Le n'Nent'M,(4tnn}Y(p) SS1(p)] dP) nmnm6AtA,4ce

- an'inmM' 

,.onAO'lln. f kflef1l(P)12dP t c.e. (E4)

The right-hand side of Eq. (E4) gives the energy contributed by the x component of the
electric field for all modes which are plane polarized in the x direction. The energy con-
tributed by the other Cartesian components asociated with these modes can be found in
the same way. The total energy contained in all of the x polarized modes, found by
summing over all contributions, is

4 O (rnn'Nlnn'N M. [P)I[ + 2p (ES)

It ik evident from this expresdon that modes with different (n, n', N) do not couple;
they contribute their energy Independently to the total.

To find the energy contributed by the modes which are plane polarized In the y
direction, It is first necessary to note that any two modes which are plane polarized in
orthogonal directions do not couple. Consider any field with two plane-polarized
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components as given by Eq. (10). By substituting Eq. (5) into (10), and then substituting
(10) into (31), we find that

= X2 LIg(Z)12 aff
47r

p 2 +q 2 <_l

eX2 Llg(z)12

2ir
(E6)Or+q~ 018 q (1--) 1%, ( -

p2+q2-<l L ' m2 m2 

This result confirms our assumption that the two orthogonally polarized components of a
general field do not couple but contribute their energy independently to the total.

Since all modes with different (n, n', N) are independent, and since the two modes
with the same (n, n', N) but different s contain the same energy (the field distributions
are the same but rotated 900 in space), we can obtain the total energy of the most
general resonator field simply by summing Eq. (E5) over s. The Hamiltonian is put into
the standard form given by Eq. (32) simply by normalizing the angular spectrum as given
by (33) and simplifying the notation by replacing (n, n', N, s) by the single symbol M.

[el 9(p, q)12 + plg((p, q)12]
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